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1 Introduction
Unsupervised learning is a fundamental and essential sub-field of machine learning that has attracted
significant attention. In this study, we focus on unsupervised visual learning, where the center problem
can be formulated as: how do we learn underlying patterns from image data that we can classify
visual entities without using labels. Despite the the popularity of supervised learning, it requires
large, clean, and carefully handcrafted datasets and unsupervised learning is becoming increasingly
appealing due to its ability to learn form massive amount of unlabeled data. Traditional methods
such as K-means[1] and Gaussian Mixture Models (GMM) have shown promising unsupervised
classification performance on benchmark datasets like MNIST [17]. In recent years, benefiting from
the development of deep learning and ever-growing availability of computational resources, more
advanced unsupervised learning methods such as InfoGAN[5], Capsule Networks[10] and MoCo [8]
are poposed.

What are the intuition behind these methods? Do they perform better compared to traditional methods
and are they sensitive to the choice of hyper-parameters? Are they computationally expensive and
affordable? In this study, we thoroughly analyze the pros and cons of classicial and state-of-the-art
methods and try to answer these questions.

This study is structured as follows: in Sec. 2 we describe the two dataset we use. In Sec. 3 we
provide a summary of the research background of unsupervised learning and in Sec. 4 we introduce
related works in recent years. Methods are described in Sec.5 and experiments and results are shown
in Sec.6. Finally we have discussion and analysis in Sec.7.

2 Data
We mainly study the performance of our models on two visual tasks: Optical Character Recognition
(OCR) and 3D Object Instances Categorization. The OCR task is relatively simple and well studied
and is used as a benchmark to fairly compare the performance of different methods. 3D Object
Instances Categorization is a more advanced task to push the boundary of our studied method. We
generate the data by ourselves for this task.

2.1 Optical Character Recognition (OCR)
One classic task of unsupervised learning is character classification, or generally Optical Character
Recognition (OCR). MNIST [17] and USPS [13] are popular benchmarks for unsupervised learning
methods. These tasks are comparatively easy and computationally inexpensive as the background
is always clean and the image size is small. We use MNIST as our OCR dataset. MNIST contains
images of handwritten digits (0-9) with ground truths. It has 60K training and 10K testing gray scale
images of size 28 × 28 size on a background. We use this dataset as a benchmark for all of the
methods we studied. MNIST is relatively well-known that we do not show sample data of it.

2.2 3D Object Instances Categorization
OCR mainly studies the ability of recognizing 2D entity recognition under 2D affine transforms.
However, real world objects reside in the 3D world and are subjective to 3D transformations. Given
this constraint on the OCR task, we proposes using a more difficult 3D entity dataset to study the
effectiveness of unsupervised classification techniques for 3D objects subject to 3D transformations.
We synthetically generate a new dataset that contains 10 different chairs under different viewpoints.
Specifically, we rendered 10 instances of chairs from ShapeNetV2 dataset [4] under different rotations.



Figure 1: Samples from the ShapeNet-Rotation Dataset

Notice that only rotation is considered as traditional object classification task assume objects to be
centered in the current image. For each instance we rendered 7000 images, amounting to 60K training
and 10K testing images. Since each instance has a different color and can provide a strong cue for the
classifier, we convert all the images to grey scale. Samples from the dataset can be found in Figure.1.
For simplicity, we will call it ShapeNet in the following sections.

3 Background
By the time of midway report, we finished the related work searching and studied classic models on
MNIST. Classical methods such as Gaussian Mixture Model (GMM) and K-means are simple yet
effective unsupervised visual classification methods.

K-means clusters data points through iterative calculate centroids for images based on their euclidean
distance in the pixel space. Each centroid is estimated through taking an average of all current data
points inside the cluster.

Gaussian mixture model assumes pixels from an image are from multivariate Gaussian distribution,
and automatically estimate these Gaussian clusters through Expectation Maximization (EM).

For the consistency of our study structure. Result on classic model are shown in Sec.6 on Table. 1
with newly studied models.

4 Related Works
In this section we will discuss the topics concerning the state-of-the-art methods used in this study.

Contrastive Learning. Contrastive learning [7] is built on the assumption that samples of the same
class will have higher similarity and vise versa. In contrastive learning, people use contrastive loss to
measure the similarity between sample pairs in the representation space on-the-fly during training.
Different methods have been proposed to get pairs of samples with low similarity. For instance,
[2, 7, 12, 9, 22, 25] use an end-to-end manner to get negative samples. They use samples in the
current mini-batch as the dictionary and requires a large GPU memory size in order to get a sizeable
set of negative samples. Another approach is to use a memory bank [24] that contains representation
of all samples in the dataset. However, the representation of different samples in the memory bank
are extracted by an encoder at different time stamp resulting in inconsistency. In MoCo, a queue is
proposed as a dynamic dictionary to maintain past samples’ representation, and a momentum update
mechanism is proposed to address the inconsistency inside the training process.

Capsule Networks. Capsule networks, proposed in [10], structure hidden units of a neural network
into groups, and each group is called a capsule. The key idea behind capsule networks is modeling
visual entity’s pose and pose invariant features through latent encoding. Each capsule contains a pose
vector that represents the 2D or 3D pose of the visual entity, and also contains a feature vector that
represents the visual appearance, identity, presence etc. Capsules networks can be viewed as a form
of geometrical reasoning where the geometrical knowledge (poses) are explicitly disentangled from
its visual appearance. Also, capsules can be grouped and stacked in a hierarchical order to jointly
model a visual entity from low level visual features to high level features, simulating the hierarchical
structure of objects. Though having been proposed for a decade, capsule networks are difficult to
train. Recent advances in its training procedures such as [11] utilizes EM-routing to model part-part
and part-object relationship, while [15] uses maximum likelihood and autoencoding.
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Figure 2: Comparison between three contrastive learning paradigm. In the figure one pair of query
and key are illustrated as examples. (a). The encoders for computing query and key representations
are updated in end-to-end manner. (b). The key representation is sampled from a memory bank
[24]. (c). MoCo samples key representation from a maintained dictionary queue, and the dictionary
encoder is updated by momentum mechanism without back-propagation.

InfoGAN [6] introduced the Generative Adversarial Networks (GAN), a framework for training
generative models using a minimax game. The goal is to learn a generator that can transform a
noise variable z ∼ Pnoise(z) into a sample G(z), and a discriminator that can differentiate between
generated samples and real samples. The generator is trained by playing against an adversarial
discriminator network D that aims to distinguish between samples from the true data distribution and
the generator’s distribution. InfoGAN [5] uses an additional loss term to explicitly enforce maximum
mutual information between latent code and generated sample. Please see more details in Sec.5.

Autoencoder is a type of artificial neural network used to learn efficient data encodings in an
unsupervised manner [16]. To the best of our knowledge, autoencoder was first introduced in [3]
for dimensionality reduction and data compression. It was shown to have superior results compared
to traditional data compression methods such as principal component analysis (PCA). Autoencoder
compress an input singal into a limited dimensional latent code, and then translate the latent code back
to the input signal. More recent studies of autoencoder uses additional loss term to enforce sparsity of
the latent code and a better representation [20]. The encoder and decoder neural network can also be
designed as convolutional architecture as in [19] for parameter efficiency, which is especially suitable
for image feature extraction.

5 Methods

5.1 Autoencoder

Autoencoder consists of a encoding network and a decoding network. Formally, Let X represent
the input image, h the latent variable, E the encoder network, and D the decoder network. We
have:h = E(X) and X ′ = D(h). The encoder and decoder can be a convoluational neural network,
or a multi-layer percetron (fully connected network). Training of the network weights is done by
using gradient descent methods with a reconstruction loss between the input and output such as Mean
Square Error (MSE) loss: L(X,X ′) = 1

M

∑M
i=1 ||Xi −X ′i||22.

5.2 Momentum Contrast

Contrastive learning models what makes two objects similar or different, and use such similarity as
self-supervision. If two samples are similar, then we want the encoding for these two samples to be
similar as well.

Problem Modelling Contrastive learning can be thought of as a dictionary look-up task, in which
we want to train an encoder to map similar samples into similar representations. Consider encoded
samples {k0, k1, k2, . . .} as dictionary, and q as a encoded query. With similarity measured by dot
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Figure 3: Architecture of Stacked Capsule Autoencoder

product, we use InfoNCE as our contrastive loss:

Lq = − log
exp (q · k+/τ)∑K
i=0 exp (q · ki/τ)

(1)

In which τ is a temperature parameter as defined in [24]. Intuitively, this is equivalent to a (K + 1)-
way softmax-based classifier that tries to classify q as K+. Specifically, we use an augmented
mini-batch as positive samples K+, and make those sampled from dictionary as negative samples.

Queue as Dictionary In order to sample negative data from a sufficiently big set of data, we
maintain a queue of encoded past samples as our dictionary. As such, we decouple the size of
dictionary with the size of mini-batch during training, allowing us to have a very large dictionary
with limited GPU memory. It is different from the memory bank [24] in the sense that the queue is
updated on-the-fly. And more importantly, a momentum-based update mechanism is used for the
dictionary-side encoder.

Momentum Update Although introducing a queue as dictionary addresses the coupling issue
between mini-batch size and dictionary size, it brings a problem that back-propagation won’t work
on the continuously updating queue. A straightforward idea is to copy the query-side encoder to
the dictionary-side. However it will cause inconsistency between key representations. As such, a
momentum update is used to address the issue. Formally, denoting the parameters of query-size
encoder as θk and those of dictionary-side as θk, we update θk by:

θk ← βθk + (1− β)θq (2)

Here β ∈ [0, 1) denotes momentum coefficient. Intuitively, the momentum mechanism is calculating
the dictionary-side encoder parameters with moving average of the keys. This momentum rule
smooths the encoder update process and significantly reduces the representation space inconsistency
between different keys in the dictionary.

In Sec. 6, we compares performance with different hyper-parameters and encoder updating mecha-
nisms, in other words with or without momentum update.

5.3 Stacked Capsule Autoencoder
Stacked capsule autoencoder (SCAE) [15], divides a visual entities into parts and objects. Each
object consists of multiple parts, and assembling visual appearance of parts will form a complete
object. SCAE discovers visual entities through maximum likelihood estimation and auto-encoding as
it is a form of unsupervised learning.

Part Capsule Autoencoder (PCAE) Part capsules represents a small visual entity such as a strokes
for a character or a handle for a 3D chair. Part capsules is in charge of discovering visual parts from
an image and infer the relative view-point for that part. Assume we have M part capsules in our
model. Each part capsule contains a six-dimensional pose xm (two rotations, two translations, scale
and shear), a presence variable dm ∈ [0, 1], and an appearance/identity vector zm. Given an input
image y, part capsule encoder henc encodes the it into M capsules x1:M , d1:M , z1:M . Each special
appearance/identity vector zm will be used to map the part capsule to a color cm and image template
Tm ∈ [0, 1]ht×wt×(c+1) to be assembled to a full image.

x1:M , d1:M , z1:M = henc(y) predict part capsule parameters (3)

4



cm = MLP (zm) predict color of part capsule (4)
Tm = MLP (zm) predict template image of part capsule (5)

T̂m = TransformImage (Tm,xm) apply affine transforms to image templates (6)

pym,i,j ∝ dmT̂
a
m,i,j compute mixing probabilities (7)

p(y) =
∏
i,j

M∑
m=1

pym,i,jN
(
yi,j |cm · T̂ c

m,i,j ;σ
2
y

)
calculate the image likelihood (8)

The image is modelled as a spatial Gaussian mixture and the parameters of the networks is trained by
maximizing the image likelihood of equation (8).

Object Capsule Autoencoder (OCAE) Object capsules assembles the part capsules into respective
objects. The input to the object capsules encoder hcaps are the flattened out x1:M , d1:M , z1:M vectors
from the part capsules. Assume there are K object capsules, then the output of the object capsule is
object capsule pose (object view matrix) OV1:K , object capsule feature vector ck, and object presence
probability ak ∈ [0, 1]. From part capsule feature ck, each part capsule uses a seperate multi-layer
perceptron hpart

k (ck) to decode ck into object-part pose relationship matrix OPk,1:N (assume each
object consists of < N parts), conditional probability ak,n ∈ [0, 1] that given object a candidate part
exists, and standard deviation λk,n. Finally, an object is modeled as a mixture of Gaussians from
the part parameters. Each part capsule can belong to only one object capsule, and object-capsule
likelihood is given by equation (13).

OV1:K , c1:K , a1:K = hcaps (x1:M , d1:M , z1:M ) predict object capsule parameters (9)

OPk,1:N , ak,1:N , λk,1:N = hpartk (ck) decode candidate parameters from ck’s (10)
Vk,n = Ovk OPk,n decode a part pose candidate, (11)

p (xm|k, n) = N (xm|µk,n, λk,n) turn candidates into mixture components (12)

p (x1:M , d1:M ) =

M∏
m=1

[
K∑

k=1

akak,m∑
i ai
∑

j ai,j
p (xm|k,m)

]dm

(13)

The OCAE network parameters are also trained to maximize the object-capsule likelihood in equation
(13). Architecture of the networks can be found in Figure.3. For more details about training OCAE &
PCAE, please refer to [15].

5.4 InfoGAN
InfoGAN [5] is an advanced method for learning interpretable representation learning in a fully
unsupervised manner. It is an information-theoretic extension to the Generative Adversarial Network
that is able to learn disentangled representations.

Method Based on Generative Adversarial Network (GAN) [6], InfoGAN uses an additional loss
term to explicitly maximize the mutual information between the latent code and output image.

Formally, Let G denotes generator, D discriminator, c the latent code, I(·, ·) the mutual information
and V the GAN loss [6], we have:

min
G

max
D

VI(D,G) = V (D,G)− λI(c;G(z, c)) (14)

And the mutual information term is approximated by an additional neural network Q which shares
most of the layers with the Discriminator, D.

Choice of the Latent Code It was shown that by providing the generator with an additional noise
term which follows 10-class uniform categorical distribution (each corresponding to a digit class
in MNIST dataset) and two parameter following continuous uniform distribution, the model is able
to learn disentangled representation for digits, width and rotation. We follow the experiment setup
described in the original paper and get interpretable generation results.
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6 Experiments and Results
During our study, we uses prediction accuracy on the hold out test set as our metric for evaluating the
unsupervised classification methods. To assign labels to the learned clusters, we employ majority vote
in algorithm (1) using training labels to assign labels to each clusters, and use this cluster dictionary
to assign labels for samples in the test set.

Algorithm 1 Assign Majority
Function gen_cluster_dict(training_label, training_clusters):

for cluster in training_clusters do
label_count = []
for sample in cluster do

true_label = training_label[sample]
label_count[true_label] += 1

end
cluster_label = argmaxlabel(label_count)

cluster_label_dict[cluster] = cluster_label

end

6.1 Implementation Details

Autoencoder Considering the resolution and computational cost, we use different implementation
of Autoencoder for the two datasets. Details are described below.

For MNIST, we use fully-connected network architecture. Both the encoder and decoder has one
hidden layer. Encoder feature size is 28× 28→ 128→ 64 and decoder 64→ 128→ 28× 28. We
use MSE loss with l2 regularization. We use Adam [14] optimizer with learning rate 1e-3 and trained
on the MNIST training set for 100 epochs.

For ShapeNet, we resize the original image to 64× 64 and use fully-convolutional neural network
(FCN) for both Encoder and Decoder. The encoder has two convolutional layers with kernel size
3 and stride 2 followed by ReLU activation and a maxpooling layer with down-sample rate of 2.
The Decoder uses de-convolutional layers with corresponding size with respect to the Encoder. The
flattened feature at bottleneck is 200 dimensional vector for each image. We use Adam optimizer
with learning rate 1e-3 and trained on the MNIST training set for 30 epochs. It takes about 2 hours for
the model to fully converge.We feed the bottleneck feature extracted by the autoencoder to a GMM
model with assign_majoirty to get the final classification results.

Momentum Contrast Because of the difference in dataset complexity and size, different backbone
networks are used for two dataset. The backbone networks are relatively small in order to save time
for parameter tuning and ablation study.

For MNIST, we use a simple two-layer neural network. Two conv2d layers followed by a maxpooling
and fully connected to a 1d representation vector. We use random rotation within 20 degrees and
random cropping into 28× 28 image to form positive samples.

For ShapeNet, we use a self-implemented AlexNet. Note that we use AdaptiveMaxpooling to allow
customized size of input. For augmentation, we use random rotation within 20 degrees and random
cropping into 112× 112 size of image, given the original size of image is 128× 128.

We use SGD as our optimizer. The initial learning rate is 0.01 with weight decay set to 0.0001. We
use a mini-batch size of 100 in one single RTX2080Ti GPU. We train for 100 epoches with 5 mins
for MNIST dataset and 16 hours for ShapeNet dataset.We feed the bottleneck feature extracted by the
MoCo encoder to a GMM model with assign_majoirty to get the final classification results.

Stacked Capsule Autoencoders A convolutional encoder is used for part capsules and a set
transformer encoder [18] is used for object capsules. MNIST and ShapeNet dataset share most of the
model configuration, with MNIST has a input canvas size 40× 40 and ShapeNet 128× 128. The best
performing model has 40 template images, 40 part capsules and 32 object capsules. The part capsule
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have CNN architecture of: 2 layers of CNN with channel size 128 and stride of 2 plus a 2 layers
of CNN with channel size 128 and stride of 1, with 3× 3 kernels . For set transformer it uses one
attention head of 16 hidden units and 256 output units with layer normalization. ReLU activation is
used for all nonlinearities except for presence vector dm, where sigmoid is used. RMSPropOptimizer
is used for optimization. For implementation details please refer to [15]. The model for MNIST was
trained for 300000 epoches over 5 days. The model for ShapeNet was for 6 days and reached around
4000 epoches. Classification on Capsule Network is performed by K-means clustering on object
capsules into 10 clusters and bipartite matching based on training labels.

6.2 Results on Two Dataset
We report our experiment results on MNIST and ShapeNet in Table 1. For GMM and K-means,
we report the best result using tuned parameters. For other models, refer to Sec.6.1 for details. For
MNIST dataset, Capsule reports the best accuracy of 0.985. In terms of efficiency, MoCo is better
than Capsule. It achieves comparative results in 5 minutes, which is 1000 times faster than Capsule.
On ShapeNet, Capsule fails to converge with limited computational resources and training time, while
MoCo still achieves a reasonable accuracy with acceptable training time.

Table 1: Results of different unsupervised learning methods on MNIST and ShapeNet.
MNIST ShapeNet

Accuracy Training Time Accuracy Training Time
K-means (10 classes) 0.752 1 min 0.395 2 mins
GMM (130 components) 0.928 3 mins 0.747 1 hour
Auto-Encoder 0.912 20 mins 0.637 2 hours
InfoGan 1 0.920 - - -
Capsule 0.985 5 days 0.228 2 -
MoCo 0.969 5 mins 0.752 16 hours

6.3 Ablation Study

Stacked Capsule Autoencoders: For Capsule networks, we tuned the number of part and object
capsules for both of the datasets, and results can be found in table 2. From the result we can see that
40 part capsules and 32 object capsules are the optimal setting for both of the experiments.

Table 2: Results of different parameter of capsule networks.

Template # Template Size Capsule # Acc.
MNIST ShapeNet

30 30 16 0.9836 0.15082 (5019 epoch)
40 40 32 0.985 0.22802 (4320 epoch)
60 60 40 0.9825 0.11462 (2068 epoch)

Momentum Contrast: For MoCo, we test our model with different queue length (dictionary size) and
momentum factor on MNIST dataset. The result is shown in Table 3. We can see that with momentum
0.999 and queue length 64, the model can achieve best performance. Notice that Momentum = 0
will result in the non-convergence of MoCo. This prove that a momentum closer to 1 can smooth the
update of dictionary-side encoder and stabilize the training. A possible reason for the performance
drop with m = 0.9999 is that the encoder process too slowly and hasn’t reach the optimal state. The
dictionary size also should not be too large as it will amplify the inconsistency between different keys
within the dictionary. In our case, 64 is a good trade-off for MNIST dataset.

7 Discussion and Analysis
Our results on MNIST show that all methods except for K-means can achieve comparative results,
while Capsule networks achieve the best performance of 98.5% accuracy. However, comparing the
training time, it is clear that MoCo has the best performance overall in this task and achieve a balance
between computational efficiency and accuracy. Notice that GMM, though a non-deep-learning
method, performed well in this task and achieved competitive accuracy. During our experiment

1Due to limited computational resources, we did not train InfoGAN from scratch but use pre-trained model
2Models have not yet converged after 6 days and partially trained result are shown here
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Table 3: Ablation Study of MoCo on MNIST Dataset. ’-’ means the model doesn’t converge.

Queue Length 16 32 64 128 256
Momentum = 0 - - - - -
Momentum = 0.9 0.9138 0.9511 0.9516 0.9531 0.9442
Momentum = 0.99 0.9298 0.9327 0.9623 0.9691 0.9536
Momentum = 0.999 0.9291 0.9429 0.9698 0.9487 0.9339
Momentum = 0.9999 0.9120 0.9380 0.9446 0.9367 0.9403

we notice that the accuracy of GMM models increase significantly as we increase the number of
components, and the trend of accuracy gain does not stop at 130 components (due to computational
limitation our maximum model have full diagonal matrix and 130 components). The strong per-
formance of GMM with large number of components can be attributed to the characteristic of the
MNIST dataset: the dataset contains only black and white digits and does not contains significant
variation in terms of background and shape. Thus, a GMM model with significantly more components
than number of classes can memorize all of the variations and successfully classify in the test set.
However, in natural images with a variety of backgrounds, GMM may suffer from model capacity
while MoCo and Autoencoder may benefit from CNN based feature extractors. InfoGAN is designed
as a interpretable generative model and is not explicitly optimized for classification task, so its result
is not as appealing as other state-of-the-art methods like Capsule.

On the more challenging dataset of rendered ShapeNet models, similar trend can be observed. failed
to achieve a resonable training epoch during the time frame of this project, and only attain an accuracy
slightly better than random guessing. It can be seen that Capsule networks still suffers from its long
training time and model complexity. MoCo performed the best overall within a reasonable training
time, while GMM still achieves similar results. GMM’s success can be attributed similar reason
under MNIST: this dataset features black and white images of rendered 3D chairs from ShapeNet
under different viewpoints, and while having a much bigger image size (128 x 128 [ShapeNet] vs 40
x 40 [MNIST]), the dataset still suffers from lack of variation in its background. The dataset also
suffers from lack of pixel variability, with the shapes rendered only under the same lighting and
texture condition.

MoCo’s strong performance overall demonstrated its effective in discovering visual entities under
both 2D transformations and 3D transformations. Since we chose a relatively simple backbone
for both of the dataset, the full power of MoCo has yet to be discovered. Though state-of-the-art
methods usually rely on CNNs as feature extractor (auto-encoder, Capsules, InfoGAN), results from
GMM shows that it is an efficient way for modeling appearance for the same entity. Notice that
the drawbacks from the current ShapeNet dataset can be improved by render the 3D shapes to a
randomrized background, as well as perform random image disturbing on the generated images (such
as blur, add random noise, etc.). Result from such a dataset can provide additional insight into the
ability of GMM and MoCo under a more diverse image setting.

7.1 Future Works
We have studied several state-of-the-art unsupervised learning methods and conducted experiment
to compare them across two different datasets. The experiments, however, are still limited in their
thoroughness. For instance, due to the limited computational resources, we only did ablation studies
on several parameters that we think are most important. The choice of neural network backbones for
MoCo is also conservative as a deeper network would consume more GPU memory and typically
takes longer time to converge. In the future we would try to extend the analysis to include more
variables so that we can search for the “best” model under multiple criteria.

On the other hand, though we have covered both 2D and 3D vision dataset, all of the methods we
have explored does not utilize any form of 3D prior (capsule networks only uses 2D poses, while in
general CNN models no 3D transformation). The natural next step would be to extend the current
models by baking in 3D priors such as in [21] [23].
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